The walking, talking, thinking robots of science fiction are far removed from the automated machines of today. Even today's most intelligent robots are little more than slaves – programmed to do our bidding.
Many research groups are trying to build robots that could be less like workers and more like companions. But to play this role, they must be able to interact with people in natural ways, and play a pro-active part in joint tasks and decision-making. We need robots that can ask questions, discuss and explore possibilities, assess their companion's ideas and anticipate what their partners might do next.
The EU-funded JAST project (http://www.euprojects-jast.net/) brings a multidisciplinary team together to do just this. The project explores ways by which a robot can anticipate/predict the actions and intentions of a human partner as they work collaboratively on a task.
Who knows best?
You cannot make human-robot interaction more natural unless you understand what 'natural' actually means. But few studies have investigated the cognitive mechanisms that are the basis of joint activity (i.e. where two people are working together to achieve a common goal).
A major element of the JAST project, therefore, was to conduct studies of human-human collaboration. These experiments and observations could feed into the development of more natural robotic behaviour.
The researchers participating in JAST are at the forefront of their discipline and have made some significant discoveries about the cognitive processes involved in joint action and decision-making. Most importantly, they scrutinised the ways in which observation plays an important part in joint activity.
Scientists have already shown that a set of 'mirror neurons' are activated when people observe an activity. These neurons resonate as if they were mimicking the activity; the brain learns about an activity by effectively copying what is going on. In the JAST project, a similar resonance was discovered during joint tasks: people observe their partners and the brain copies their action to try and make sense of it.
In other words, the brain processes the observed actions (and errors, it turns out) as if it is doing them itself. The brain mirrors what the other person is doing either for motor-simulation purposes or to select the most adequate complementary action.
Source: www.sciencedaily.com
No comments:
Post a Comment
Please comment on this article so that other users may take advantage of this. Relative comments to this article are welcome.